电动机驱动控制系统是新能源汽车车辆行使中的主要执行结构,驱动电动机及其控制系统是新能源汽车的核心部件(电池、电动机、电控)之一,其驱动特性直接决定汽车行驶的爬坡、加速、最高速度等主要㊣性能指标,是电动汽车的重要部件。
控制器主要由功率模块(电源的电子开关线路)和控制模块(包括微处理器和相应软件)组成,控制器的作用是将动力源的电能转变为适合于电动机运行的另一种形式的电能,控制器本质上是一个电能变换控制装置。控制器选择恰当时,驱动系统的性能取决于电动机。
电动机是把电能转换成机械能的装置。它被广泛应用于机械、冶金、石油、煤炭、化工、航空、交通、农业㊣等各种㊣行✅业。
最高转速分类:最高转速小于6000r/ min 的普通电动机和最高转速高于6000r/ min 的高速电动机。
新能源动力汽车的特点是将不同类型的能源转换为电能,电动机将电能转换为机械能,并通过传动系统将机械能传递到车轮驱动车辆行驶,电动机在动力系统中的位置如下图所示。
电动汽车对电动机的要求是功率和转矩应满足电动车辆动力性能的要求,适应车辆频繁的起动、加速、制动减速和倒车的运动要求;一般要求电动机能承受2~4倍的过载,并能实现四象限的运转和高效回收车辆在制动是的反馈能量;电动机工作电压高、转速高可以提高电动机的比功率,减小电动机的尺寸、降低重量和有利于在车辆上的安装布置;电动机具有良好的可靠性、耐温、耐湿,结构简单维修方便。
混合动力汽车对电动机的要求是电动机可单独驱动汽车行驶,在市区实现零排放。电动机在汽车启动、加速、大负荷运㊣行时可以与发动机共同驱动汽车,在减速制动时以再生模式工作,起回收制动能量作用,与发电动机功能相同。
直流电动机分为定子与转子,定子和转子之间由空气隙分开。定子包㊣括主磁极,机座,换向极,电刷㊣装置等。转子包括电枢铁芯,电枢绕组,换向器,轴和风扇等。
定子:发动机中固定不动的部分,它主要由主磁极、机座和电刷装置组成。主磁极是由主磁极铁芯(极心和极掌)和励磁绕组组成,其作用时用来产生磁场。
转子:电动机的转㊣动部分,主要由电枢和换向器组成。电枢是电动机中产生感应电动势的部分,主要包括电枢铁芯和电枢饶组。换向㊣器又称整流子,使转动的电枢绕组得以同外电路连接起来,并实现将外部㊣直流电流转化为电枢绕组内的交流电流。
直流电动机工作原理:直流电从两电刷之间通入电枢绕组,电枢电流方向如下图所示。由于换向片和电源固定联接,无论线圈㊣怎样转动,总是N极有效边的电流方向向里,S极㊣有效边的电流方向向外。电动机电枢绕组通电后受力(左手定则)按逆时针方向旋转。线圈在磁场中旋转将在线圈中产生感应电动势,由右手定则,感应电动势的方向与电流的方向相反垂直电梯,也称为反电动势。虽然电流方向使交替变化,但线圈所受电磁力的方向不改㊣变,因而线圈可以连续地按逆时针方向旋转。
三相异步感应电动机(Three-Phase Induction Motor)是一种常见的电动机类型,广泛用于工业和商业应用中。它是一种非同步电动机,因为其转子的运动速度略低㊣于旋转磁场的速度,因此被称为异步电动机。
三相异步电动机的结构如下图所示,主要由定✅✅子、转子、机座、支架、外壳、风扇✅罩和冷却风扇等组成。感应式电动机转子与定子之间没有任何电气上的联系,能量㊣的传递全靠电✅磁感应作用。
假定三相异步电动机定子绕组的连接方法为星形连接,单个绕组的始端分别为ABC;末端㊣分别为XYZ。三相对称绕组分别为AX、BY、CZ并接在三相正弦交流电源上,通入三相交变电流。
一般规定,电流为正值时从绕组的始端流入(A、B、C端),从绕组的末端流出(X、Y、Z);为负值时相反。据此规则,可得到三相电流产生的磁场随时间变化㊣的关系。
异步电动机的㊣旋转方向与通入绕组的三相交流电相序有关。任意㊣对调两根三相电源街道定子绕组上的导线,就可以改变异步电动机的旋转方向。
三相异步感应电动机的工作原理基于法拉第的感应定律。当交流电流通过定子的三个绕组时,会产生一个旋转磁场。由于旋转磁场不断切割转子中的闭合导体,产生感应电动势和感应电流,再由转子中的感应电流和旋转磁场的相互作用产生电磁转矩,使得转子随着旋转磁场的方向同向运转。在异步电动机中,为保持旋转磁场始终切割转子导体产生感应电流,转子转速小于旋转磁场的速度。
永磁同步电动机(Permanent Magnet Synchronous Motor,PMSM)是一种常见的电动机类型,广泛用于新能源汽车、工业应用、家用电器等领域。与其他类型的电动机相比,PMSM在效率、功率密度和动态性能方面具有优势。
PMSM的核心是永磁体,通常是强磁性材料(如永磁铁矿物)制成。在PMSM中,永磁体产生一个固定的磁场,而电流通过电动机的绕组产生一个旋转磁场。这两个✅磁场之间的相互作用导致电动机的旋转运动。
PMSM㊣通常与一个控制系统配合使用,控制系统监测电动机的状态(例如电流、速度、位置)并根据需要调整电流来控制电动机的运行。这种精确的控制使得PMSM可以在各种负载条件下提供高性能。
磁阻电动机(Reluctance Motor)工作原理基于磁阻力,而不是永磁或电㊣磁感应,通常不需要永磁体或电磁绕组,因此在某些应用中具✅有高可靠性等优势。
磁阻电动机利用转子磁阻不均匀而产生转矩的小功率同步电动机,又称反应式同步电动机。它不依靠定、转子绕组电流所产生磁场的㊣相互作用而产生转矩,而是依靠“磁阻最小原理”产生转矩。
磁阻电动机的工作原理基于磁阻力或磁阻效应。这种效应利用了磁场中磁路的不同磁导率(磁阻)会导致磁场线路更容易通过具有较低磁导率的区域,而在具有较高磁导率的区域中更难通过的事实。电动机的转子通常具有一些不同形状的铁芯,这些铁芯可以通过控制电流来调整磁场的分布,从而导致转子发生旋转。
总而言之,新能源汽车的驱动系统依赖于电动技术,与传统内燃机车辆有很大的不同,新能源汽车的发展正在不断推动电动技术和电池技术的进步。新能源汽车电驱动系统的研究具有重要意义,它不仅能够推动汽车产业向可持续、低碳方向发展,减少对有限化石燃料的依赖,还有助于减少环境污染和气候变化的影响。